Fast Exploration of the QSAR Model Space with e-Science
Central and Windows Azure

Jacek Cata, Hugo Hiden, Simon Woodman, Paul Watson
School of Computing Science
University of Newcastle upon Tyne
United Kingdom

Extended Abstract

Quantitative Structure Activity Relationship (QSAR) is a method to create mathematical models that
can predict biological activity of compounds from their chemical structure [1]. Chemists use QSAR
models to focus synthesis of new compounds, to design better, safer drugs, as well as more
environmentally benign products.

In the search for highly predictive QSAR models a number of approaches has been applied from
straightforward techniques, like using multiple linear regression, to using specialized modelling
environments offering users variety of data mining tools [2][3], to automated systems that can apply
various modelling techniques for the same input and select the most promising models [4][5]. The
automated QSAR is an attractive approach to accelerate building predictive models because it can
quickly explore and assess thousands of models with no need for human intervention. It is especially
important as new, large databases of chemical compounds have recently become available, covering
many different types of biological targets and activities.

Overall, QSAR is a specialized machine learning process (Figure 1). As input it receives a set of pairs
relating molecular structure of a compound with its activity against a particular biological target. The
input set is split into a training and testing subset. Then, a set of molecular descriptors that
numerically represent certain properties of the compound (e.g. molecular weight) are calculated.
Next, the relevant descriptors are selected and used by model-building algorithms (e.g. multiple
linear regression, neural networks) to create mathematical models. Finally, the produced models are
tested and those with high prediction capabilities are stored for later use.

Algorithm input: Algorithm input: Algorithm input:
new descriptor new feature new model
calculatorsl selectorsl bui[dersl
Data input:
new chemical structures Split training Model output:
and their activity betweena | Set | calculate | Select _ Build .| Select good new prediction models
trial and "] descriptors "] descriptors "] models ”| models |
test set
testing set T

Figure 1. A general view on the QSAR modelling process.

Technical Challenge. Building useful QSAR models requires substantial computational resources. The
most computing intensive stages are: (1) calculating molecular descriptors, which can produce
hundreds or even thousands of parameters for each compound, (2) filtering descriptors to remove
redundant or irrelevant features so as to speed up learning and increase the generalisability of the
results, and (3) using certain model building algorithms like neural networks which can take over an
hour to produce an output.

With the availability of large databases of chemical compounds, such as ChREMBLdb' that provides
over one million of small molecule structures with corresponding activities, exploring QSAR model
space quickly becomes workload of CPU-year size. And even if the process can build thousands of
models, only a small percentage of them is valid and useful for further QSAR prediction. Therefore,
finding an efficient way to perform the modelling will enable us to experiment with different
descriptor calculation, feature selection and model building algorithms in the future.

Method. Fortunately, the cloud computing approach very well fits the presented problem. The
modelling process is a combination of the task- and data-based parallelism and can be effectively run
on a cluster of machines. Moreover, after initial processing of the whole ChEMBLdb database with
available model building algorithms, further efforts with QSAR analysis will require much less

resources.

We based the design of our QSAR modelling tool on the Discovery Bus — a system that implements
an auto-QSAR best practice modelling workflow [4]. However, our previous work showed that the
use of the Discovery Bus to build QSAR models was of limited scalability [6]. For this reason we
decided to model the original drug discovery workflows using our e-Science Central platform (e-SC)
and process them with e-SC workflow engines running in Azure. e-Science Central is a cloud-based
workflow enactment system [7]. It uniquely combines the Software-as-a-Service approach with
social networking and cloud-computing, all to support scientists in designing, running and sharing
their analyses on large scale while being freed from most of the burden of software maintenance.

For evaluation purposes we used Windows Azure to run a complete copy of the publicly available
e-SC system.” Figure 2 shows the architecture and deployment of the system in the cloud. The
central server executes in two Azure VM instances — one hosts e-SC frontend on top of a JEE
application server while the other runs the database engine. Machines have been started using a
single deployment package. This allowed us to connect them directly via JDBC/TCP and to avoid the

web
browser

rich client
| app
|

l <<Azure VM>>
Web UI REST AP
. —‘ e-SC control data

- e-Science Dttt B f it i 3
I
1
]
I
I
I

ntral
Sy mjf\ stera er| —» | JMS queue
i \Z
store queu l
<<worker role>> <<worker role>> <<worker role>>

Workflow Workflow cee Workflow
engine engine engine

I
I
I
I
I
I

e-SCdb
backend
<<Azure VM>> -

Azure Blob
workflow data store workflow data

Figure 2. The architecture of e-Science Central deployed in Windows Azure.

! https://www.ebi.ac.uk/chembl
2 http://www.esciencecentral.co.uk

Azure load balancer between the server and database, which is redundant in our case.

Separately, a number of e-SC workflow engines is running, each in its own Azure worker role node.
The engines are connected with the server by a JMS message queue and the REST-based API.
Despite Azure offers its own queuing service, to preserve as much consistency with the original e-SC
implementation as possible we did not decide to switch the queue services. There is no obvious
benefit for such a change. Conversely, as shown by Hill et al. [8], reading rates for the Azure queue
service when accessed by a large number of clients can drop to as little as 2 messages per second
per client. Their observation is in line with the scalability target of 500 messages per second for a
single queue as indicated by Calder [9].

To implement our QSAR scenario we built 12 workflows corresponding to the process presented in
Figure 1. Users submit their workflows via a web browser or dedicated desktop application. The
submission is accepted by the server which creates for it a workflow invocation. The invocation
comprises a sequence of service (block) calls. These are either core services available within e-
Science Central or custom blocks that the scientist has uploaded. e-SC supports execution of various
service kinds such as Java, R and Octave. They can be as simple as downloading data from blob
storage or as complex as building a QSAR model which can consume over one CPU-hour. System also
offers control blocks that can initiate subsequent workflow invocations, and so create invocation
chains, trees or even loops. Importantly, workflow invocations are completely independent of each
other and may be processed by any of the workflow engines.

All created workflow invocations are sent to a single message queue from which they are acquired
by the engines. Adoption of the work-stealing approach rather than explicit task scheduling, better
fits the Windows Azure platform for at least two reasons. First, worker nodes may be restarted or
taken offline anytime during their operation. This may happen either because of node failure or due
to service healing or automatic upgrade of the OS. Second, the global invocation queue facilitates
adding nodes to and removing them from the resource pool. There is no need for rescheduling tasks
when the pool size changes.

When a workflow invocation is executed, the engine runs the included blocks one by one according
to the structure of the flow of data. The definition of a block contains not only the declaration of
input ports which the block requires to run but also software dependencies that must be met to
start it. For example, a number of blocks in our QSAR scenario need the R runtime environment, and
so this requirement is expressed in the block descriptor as a library dependency. Before running a
service, any unavailable libraries are downloaded from the server on demand. Once all software
dependencies are met, the engine starts executing a service. To improve security and reliability
every block execution involves creation of a dedicated process in the operating system. In the case
of Java blocks it is a JVM process, while for R blocks R runtime environment is started.

The overall result of a workflow invocation is sent back to the server as a simple status message
(success or failure). Additionally, the server creates for each invocation a dedicated folder where all
invocation specific data may be stored; to transfer them e-SC offers a number of I/O blocks.

Evaluation. The evaluation of the presented system was run in the Windows Azure platform located
in the Western Europe data centre. The server was hosted in two extra large Azure VM instances.

Workflow engines were deployed in 1-200 small instance worker role nodes. Input data for the
evaluation purposes were selected from ChEMBLdb — a database of bioactive drug-like molecules.

Figure 3 presents the observed speed up in data processing in relation to the number of workers. As
shown, our QSAR scenario scales nearly linearly up to 200 worker nodes. The observed speed up for
200 workers was 88.2% of the ideal linear speed up when compared to 20 workers.

250

200
88.2% (176)

150

93.7% (112)

100 93.6% (94)

e— deal

e o ctual

[
o

96.7% (48)

Relative processing speed up

100.0% (20)

0 50 100 150 200 250
Number of processors

Figure 3. Speed-up in processing QSAR workflows in relation to the number of worker nodes.

Discussion. We presented a fast and scalable way to perform the exploration of the QSAR model
space. The acceleration achieved is much beyond what existing solutions can offer. Overall, the
cloud computing model is a very good fit for the presented scenario. After initial processing of the
whole ChEMBLdb database with all available model building algorithms, further efforts with QSAR
analysis will require much less resources. The database is regularly updated, thus we can extract
several hundred new input datasets every three months. This is less than 10% of the current input
size, and so it will need just a fraction of the infrastructure for less than 24 hours to be processed.
Also, the development of new QSAR algorithms can be tested on a relatively small part of the input
sets and for only the most promising ones the whole input data shall be applied.

When moving the QSAR analysis to the cloud, our main concern was on improving performance
while increasing the number of running workflow engines. Several aspects were important in this
respect. Firstly, crucial for effective operation of e-SC workflow engines was reducing the amount of
data transferred between the server and the engines. For example, ability to share common
software dependencies between workflow blocks was a simple yet effective way to reduce the
amount of data transferred from the e-SC data repository to the engines. And with the increasing
number of engines the saving are significant and can easily reach tens of gigabytes of data even if
the dependencies are relatively small such as R runtime environment (less than 20 MB).

Secondly, a substantial gain in the number of processors working in parallel and overall processing
effectiveness was achieved after changing the storage for intermediate data produced by workflows.
We used the Azure blob storage that proved to be scalable enough to overcome a bottleneck related
to communication with the central e-SC data repository. Switching to the blob storage was as simple
as adding to the palette of existing e-SC blocks a few new 1/O services (100-150 lines of Java code
each) and changing existing 1/0 blocks in all related workflows.

Definitely, a valuable feature of our system is that the basic unit of work it relies on is a workflow
rather than task invocation. Not only does it increase the run time of an invocation, which improves
effectiveness, but also it allows for fast data transfer between the subsequent services. Unlike many
other solutions based on task scheduling (e.g. Falcon, Condor and Pegasus; see [10][11] for an
overview), blocks in our system communicate using local disk rather than shared file system; an
important property for cloud-based solutions in which users also pay for network communication.

The current design of the system reaches scalability limitation at about 200 worker nodes. Running
more workers causes overload to the data store VM, results in execution failures and lowers overall
system performance. Whilst, for our QSAR use case 200 nodes gave more than satisfactory results, in
the future we would like to remove this limitation.

References

[1] C. Hansch, A. Leo, and D. H. Hoekman, Exploring QSAR: Fundamentals and applications in chemistry and
biology. American Chemical Society, 1995.

[2] C. Luscombe, “QSAR Workbench: Guided QSAR Model Building for nonExperts.” The UKQSAR and
Chemolnformatics Group, Cambridge, UK, 2011.

[3] J. C. Stalring, L. A. Carlsson, P. Almeida, and S. Boyer, “AZOrange - High performance open source
machine learning for QSAR modeling in a graphical programming environment.,” Journal of
cheminformatics, vol. 3, no. 1, p. 28, Jan. 2011.

[4] J. Cartmell, S. Enoch, D. Krstajic, and D. E. Leahy, “Automated QSPR through Competitive Workflow.,”
Journal of computer-aided molecular design, vol. 19, no. 11, pp. 821-833, Nov. 2005.

[5] D.J. Wood, D. Buttar, J. G. Cumming, A. M. Davis, U. Norinder, and S. L. Rodgers, “Automated QSAR with
a Hierarchy of Global and Local Models,” Molecular Informatics, vol. 30, pp. 960-972, Nov. 2011.

[6] P. Watson et al.,, “Accelerating Chemical Property Prediction with Cloud Computing,” in Microsoft
Research eScience Workshop, 2010.

[71 P. Watson, H. Hiden, and S. Woodman, “e-Science Central for CARMEN: science as a service,”
Concurrency and Computation: Practice and Experience, vol. 22, no. 17, pp. 2369-2380, Dec. 2010

[8] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey, “Early Observations on the Performance of
Windows Azure,” in High Performance Distributed Computing, 2010, pp. 367-376.

[9] B. Calder, “Windows Azure Storage Abstractions and their Scalability Targets,” Blog post:
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-
abstractions-and-their-scalability-targets.aspx, accessed 29/Feb/2012.

[10] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-Science: An overview of workflow
system features and capabilities,” Future Generation Computer Systems, vol. 25, no. 5, pp. 528-540, May
2008.

[11] I. Raicu et al., “Middleware support for many-task computing,” Cluster Computing, vol. 13, no. 3, pp. 291-
314, Apr. 2010.

Jacek Cata is a Research Associate in the School of Computing Science, Newcastle University, UK. His
main interests are focused around adaptive, distributed and component-based systems. For the last
three years he has been involved in projects closely related to cloud computing. While developing a
system for automated QSAR in the cloud, he has been searching for scalable and efficient application
architectures that can well fit the cloud approach.

Paul Watson is Professor of Computer Science and Director of the North East Regional e-Science
Centre at Newcastle University, UK. In the 80's, as a Lecturer at Manchester University, he was a
designer of the Alvey Flagship and Esprit EDS systems. From 1990-5 he worked for ICL as a system

designer of the Goldrush MegaServer parallel database server, which was released as a product in
1994. In August 1995 he moved to Newcastle University, where he has been an investigator on
research projects worth over S40M. His research interests are in scalable information management.
This includes data-intensive e-science, grid and cloud computing.

